
Overview
Monitoring
Beacon
Relay
Instructions
Gateway

Marlin Network



The current architecture has 4 types of nodes

Beacon
Monitoring
Relay
User (Producers + Consumers)

A cluster operator is responsible for running managing the beacon, monitoring and relay nodes.
Users of the network need to simply run and manage a user node.

Overview
Architecture



The beacon node is similar to seed nodes or bootstrap nodes in other networks. It is the initial
touchpoint using which a user discovers the other nodes in the network.

See Beacon for more details.

The monitoring node is used to monitor the network by aggregating logs and metrics from the
other nodes.

Beacon

Monitoring

https://docs.marlin.pro/uploads/images/gallery/2021-03/8xJGz7idD7MQfXqz-arch.png
https://docs.marlin.pro/books/marlin-network/page/beacon


See Monitoring for more details.

The relay nodes form the core of the network and are responsible for propagating information from
one user to the others.

See Relay for more details.

The user nodes produce and receive messages propagating through the network.

See Gateway for more details.

Node
TypevCPUMemoryDisk

space

Beacon0.5 1
GB

<
1
GB

Monitoring2 8
GB

50
GB

Relay1 1
<
1
GB

Reference scripts for provisioning and deployment of a cluster on GCP using Pulumi+Ansible are
provided here. While some tweaks might be needed to customize it based on your requirements
and infrastructure, it should provide a good base for any customizations.

Relay

User

Hardware Requirements

Devops scripts

https://docs.marlin.pro/books/marlin-network/page/monitoring
https://docs.marlin.pro/books/marlin-network/page/relay
https://docs.marlin.pro/books/marlin-network/page/gateway
https://github.com/marlinprotocol/Seine/tree/master/stacks/bsc/


The monitoring architecture collects logs and metrics from other nodes and provides dashboards
for visualization. It is fairly modular since the core network produces log files which can then be
consumed by any logging and analytics pipelines that support tailing log files.

Currently, we provide deployment scripts for Filebeat + the ELK stack as the default pipeline.

Elasticsearch and Logstash ports must be protected from public access, otherwise malicious actors
can introduce garbage logs into the pipelines.

The Kibana port also needs to be protected from public access, however, a permissioned access
model might be a better fit here to selectively allow people to access logs and create
visualizations. An example would be to use Nginx + TLS + HTTP Basic Auth.

Monitoring

Security considerations



The beacon node acts as a touchpoint for nodes to discover relay nodes in the cluster.

The beacon executable is built as part of OpenWeaver. See the README for build instructions.

Beacon

Using marlinctl2
Usage

$ sudo ./marlinctl beacon create --help

NAME:

   marlinctl beacon create - create a new beacon

USAGE:

   marlinctl beacon create [command options] [arguments...]

OPTIONS:

   --program value                              --program <NAME> (default: "beacon")

   --discovery-addr value                       --discovery-addr <IP:PORT> (default: 

127.0.0.1:8002)

   --heartbeat-addr value                       --heartbeat-addr <IP:PORT> (default: 

127.0.0.1:8003)

   --bootstrap-addr value, --beacon-addr value  --bootstrap-addr <IP:PORT>

   --version value                              --version <NUMBER> (default: "latest")

   --help, -h                                   show help (default: false)

Run

$ sudo ./marlinctl beacon create

Manually
Build

https://github.com/marlinprotocol/OpenWeaver
https://github.com/marlinprotocol/marlinctl2


The beacon executable supports two optional command-line arguments to set the discovery and
heartbeat listener addresses. The discovery address enables nodes to discover the nodes in its
registry and the heartbeat address enables nodes to add themselves to the registry.

By default, discovery-addr  is set to 127.0.0.1:8002  and heartbeat-addr  is set to 127.0.0.1:8003

to make it secure by default. This means that the beacon node can only be reached from 

localhost by default. To make it available for other nodes not on localhost, it needs to listen on
external interfaces as well - usually using 0.0.0.0  to bind to all interfaces:

In addition, the beacon node supports a --beacon-addr  parameter to register the cluster with the
wider Marlin Relay network.

Usage

$ ./beacon/beacon --help

USAGE: beacon [OPTIONS]

OPTIONS:

    -d, --discovery-addr <discovery_addr>

    -h, --heartbeat-addr <heartbeat_addr>

    -b, --beacon-addr <beacon_addr>

    -h, --help <help>

    -v, --version <version>

Run

$ ./beacon/beacon

Discussion

# Using marlinctl

$ sudo ./marlinctl beacon create --discovery-addr "0.0.0.0:8002" --heartbeat-addr 

"0.0.0.0:8003"

# Manually

$ ./beacon/beacon --discovery-addr "0.0.0.0:8002" --heartbeat-addr "0.0.0.0:8003"



The relay node is responsible for message propagation. It mainly comprises of 2 programs:

Relay
Abci

Relay

Using marlinctl2
Usage

$ sudo ./marlinctl relay create --help

NAME:

   marlinctl relay create - create a new relay

USAGE:

   marlinctl relay create [command options] [arguments...]

OPTIONS:

   --chain value            --chain "<CHAIN>"

   --discovery-addrs value  --discovery-addrs "<IP1:PORT1>,<IP2:PORT2>,..." (default: 

"127.0.0.1:8002")

   --heartbeat-addrs value  --heartbeat-addrs "<IP1:PORT1>,<IP2:PORT2>,..." (default: 

"127.0.0.1:8003")

   --datadir value          --datadir "/path/to/datadir" (default: "~/.ethereum/")

   --discovery-port value   --discovery-port <PORT> (default: 0)

   --pubsub-port value      --pubsub-port <PORT> (default: 0)

   --address value          --address "0x..."

   --name value             --name "<NAME>"

   --version value          --version <NUMBER> (default: "latest")

   --abci-version value     --abci-version <NUMBER> (default: "latest")

   --help, -h               show help (default: false)

Run

https://github.com/marlinprotocol/marlinctl2


The abci is automatically created.

The relay executable is built as part of OpenWeaver. See the README for build instructions.

The abci is available here. Use only the "Building from source" instructions (not Installation).

$ sudo ./marlinctl relay create --chain "eth"

Manually
Build

Usage

$ ./relay/eth_relay --help

USAGE: eth_relay [OPTIONS] discovery_addrs heartbeat_addrs datadir

OPTIONS:

    -p, --pubsub-port <pubsub_port>

    -d, --discovery-port <discovery_port>

    -a, --address <address>

    -h, --help <help>

    -v, --version <version>

ARGS:

    discovery_addrs

    heartbeat_addrs

    datadir

Run

# Blockchain

$ ./geth --datadir /path/to/datadir/ --syncmode=light

# Relay

$ ./relay/eth_relay "127.0.0.1:8002" "127.0.0.1:8003" "/path/to/datadir/"

https://github.com/marlinprotocol/OpenWeaver
https://github.com/marlinprotocol/abci-geth


The relay executable takes 3 arguments:

discovery-addrs - Comma separated string of beacon addresses to initiate discovery
heartbeat-addrs - Comma separated string of beacon addresses to register with
datadir - Path to the data directory of the blockchain node

The relay executable also supports three optional command-line arguments:

--pubsub-port - To set the local port used for the message relay (default: 5000)
--discovery-port - To set the local port used to initiate discovery (default: 5002)
--address - To set the reward address for the incentivized testnet

The blockchain node is needed to detect spam. For supporting block propagation, the blockchain
node can be a light client but to support transaction propagation, it needs to be a full node.

This is a temporary requirement and will eventually be replaced (or at the very least, decoupled)
with better spam prevention measures (e.g. an onchain light client).

Discussion

Why is the blockchain node needed?



This page details the procedure to join the Marlin network.

Refer to the architecture diagram here and understand the interactions
Preferably, set up marlinctl2  (available here) to make the setup process smoother
If you prefer a manual setup or marlinctl2  doesn't cover your use case, clone and build 
OpenWeaver

Run a beacon node
Ensure the beacon is reachable from outside
Pass "34.82.79.68:8003" as the beacon address while starting the beacon to register it with
the wider testnet

Instructions

For clusters
Step 1: Preliminaries

Step 2: Set up beacon

# Using marlinctl

$ sudo marlinctl beacon keystore create

$ sudo marlinctl beacon create --discovery-addr "0.0.0.0:8002" --heartbeat-addr 

"0.0.0.0:8003" --bootstrap-addr "34.82.79.68:8003"

# Manually

$ ./beacon/beacon --discovery-addr "0.0.0.0:8002" --heartbeat-addr "0.0.0.0:8003" --beacon-

addr "34.82.79.68:8003"

Step 3: Set up relays

https://docs.marlin.pro/link/25#bkmrk-architecture
https://github.com/marlinprotocol/marlinctl2
https://github.com/marlinprotocol/OpenWeaver
https://docs.marlin.pro/link/27#bkmrk-page-title


Run a relay node
Set the discovery-addrs  parameter to point to the discovery-addr  of your beacon set up
above
Set the heartbeat-addrs  parameter to point to the heartbeat-addr  of your beacon set up
above

Expose for public access
Discovery port of beacon
Discovery port of relay
Pubsub port of relay

Expose only for relay access
Heartbeat port of beacon

Make sure the setup above works fine before attempting the private network setup. Also ensure
that your nodes can communicate with each other through private IPs.

Run _two_ beacons, one public facing and one private facing

# Using marlinctl

$ sudo marlinctl relay eth create --discovery-addrs "beaconip:8002" --heartbeat-addrs 

"beaconip:8003"

# Manually

$ ./relay/eth_relay "beaconip:8002" "beaconip:8003" "/path/to/datadir/"

Step 4: Set up firewalls

Private network setup

Replace step 2:

# Using marlinctl

$ sudo marlinctl beacon keystore create

# Public beacon with bootstrap address

$ sudo marlinctl beacon create --discovery-addr "0.0.0.0:8002" --heartbeat-addr 

"0.0.0.0:8003" --bootstrap-addr "34.82.79.68:8003"

# Private beacon without bootstrap address

$ sudo marlinctl beacon create --discovery-addr "0.0.0.0:9002" --heartbeat-addr "0.0.0.0:9003"

https://docs.marlin.pro/link/28#bkmrk-page-title


Set the  discovery-addrs  parameter to point to the  discovery-addr  of your _private_ beacon
set up above
Set the  heartbeat-addrs  parameter to point to the  heartbeat-addr  of both your _public_ and
_private_ beacons set up above

At the end of this, you should see your private beacon getting heartbeats from the _private_ IPs of
the relays and the public beacon getting heartbeats from the _public_ IPs of the relays.

The linux UDP stack needs to be tuned for optimal performance. Here's a good reference for the
parameters - https://gist.github.com/voluntas/bc54c60aaa7ad6856e6f6a928b79ab6c.

Note: Try to understand what you're changing and why before you change it, since it depends on
your system characteristics if any of the commands there would improve or worsen performance
(and stability, be wary of memory exhaustion).

The important bits seem to be:

Run watch netstat -us  - Check if send or receive errors are increasing with time, indicates
buffer overflows
If yes, increase buffer size (replace the numbers below as you please)

# Manually

$ ./beacon/beacon --discovery-addr "0.0.0.0:8002" --heartbeat-addr "0.0.0.0:8003" --beacon-

addr "34.82.79.68:8003"

$ ./beacon/beacon --discovery-addr "0.0.0.0:9002" --heartbeat-addr "0.0.0.0:9003"

Replace step 3:

# Using marlinctl

$ sudo marlinctl relay eth create --discovery-addrs "privateip:9002" --heartbeat-addrs 

"privateip:9003,publicip:8003"

# Manually

$ ./relay/eth_relay "privateip:9002" "privateip:9003,publicip:8003" ""

Tuning

https://gist.github.com/voluntas/bc54c60aaa7ad6856e6f6a928b79ab6c


Restart the relays and check again after some time

# Per-socket read buffers

net.core.rmem_default = 8192000

net.core.rmem_max = 8192000

# Per-socket write buffers

net.core.wmem_default = 8192000

net.core.wmem_max = 8192000

# Option memory

net.core.optmem_max = 8192000

# Global tuning (multiplied by 4KB)

net.ipv4.udp_mem = 64000    64000    64000



Gateways enable people to connect their blockchain nodes to the Marlin network to send and
receive messages.

Documentation for the polkadot gateway is available here.

You need to connect your blockchain node to the gateway to send and receive data from it.

Gateway

Polkadot

NEAR Protocol

Usage (using marlinctl2)

$ sudo marlinctl gateway near create --help

NAME:

   marlinctl gateway near create - create a new gateway

USAGE:

   marlinctl gateway near create [command options] [arguments...]

OPTIONS:

   --bootstrap-addr value  --bootstrap-addr "<IP:PORT>" (default: "127.0.0.1:8002")

   --version value         --version <NUMBER> (default: "latest")

   --help, -h              show help (default: false)

Run

$ sudo marlinctl gateway near create --bootstrap-addr "54.219.22.51:8002"

Connect

Step 1: Get the gateway identity

$ sudo supervisorctl tail near_gateway

https://docs.marlin.pro/books/polkadot-gateway/page/overview-f76
https://github.com/marlinprotocol/marlinctl2


The above command prints logs which contain the identity key of the gateway. This step only
needs to performed once since the key is stored locally for future runs.

For advanced users, the key is stored as a file ( .marlin/keys/near_gateway ). You can supply your
own pre-generated key files to make the above step deterministic (useful for automation scripts).

The gateway now needs to be added as a peer. There are a variety of ways to do this, here's an
example using the commandline while starting the near node:

That's it!

The IRISnet gateway comprises of two programs:

Gateway
Bridge

...

[2020-12-06 16:20:45.648] [info] [OnRampNear.hpp:63] Node identity: 

Ar5vnFLiYeX8jHTNCKBJuTND1ez85fHZN5Q4ikanFtU

...

Step 2: Add as a peer

# Use the key obtained above

$ ./target/release/neard run --boot-nodes 

"Ar5vnFLiYeX8jHTNCKBJuTND1ez85fHZN5Q4ikanFtU@<gateway_ip>:21400"

IRISnet

Usage (using marlinctl2)

$ sudo marlinctl gateway iris create --help

NAME:

   marlinctl gateway iris create - create a new gateway

USAGE:

   marlinctl gateway iris create [command options] [arguments...]

OPTIONS:

   --bootstrapaddr value   --bootstrapaddr "<IP1:PORT1>" (default: "127.0.0.1:8002")

   --listenportpeer value  --listenportpeer "PORT" (default: "59001")

https://github.com/marlinprotocol/marlinctl2


The bridge is automatically setup for you.

You need to connect your blockchain node to the gateway to send and receive data from it.

The above command prints the node ID of the gateway. This keyfile is initially pulled from remote
to help get the system up and running as soon as possible for end user. However, you can also
generate your own keyfile and save it at the same place (
/home/exampleuser/.marlin/ctl/configs/iris_keyfile-0.0.1.json ) for gateway to use for future runs.

New keys can be generated using the following:

This would respond with:

   --peerip value          --peerip "IP" (default: "127.0.0.1")

   --peerport value        --peerport "PORT" (default: "26656")

   --rpcport value         --rpcport "PORT" (default: "26657")

   --version value         --version <NUMBER> (default: "latest")

   --help, -h              show help (default: false)

Run

sudo marlinctl gateway iris create --bootstrapaddr "52.8.52.100:8002"

Connect

Step 1: Get the gateway identity

$ ls ~/.marlin/ctl/configs/iris_keyfile*

/home/exampleuser/.marlin/ctl/configs/iris_keyfile-0.0.1.json

$ grep IdString /home/exampleuser/.marlin/ctl/configs/iris_keyfile-0.0.1.json

    "IdString": "f4d35da5490d9e5962b0b3041ccc2980b0dec5dd",

$ cd ~/.marlin/ctl/bin/

$ ./iris_gateway-0.0.1 keyfile -g -f /home/exampleuser/.marlin/ctl/configs/iris_keyfile-

0.0.1.json -c irisnet

[INFO]:2020-12-05 11:29:10 - Generating KeyPair for irisnet-0.16.3-mainnet

[INFO]:2020-12-05 11:29:10 - ID for node after generating KeyPair: 

6f5c8faeb8d14bb0c28e9dda22cc2d580e7af929

[INFO]:2020-12-05 11:29:10 - Successfully written keyfile 



Hence, 6f5c8faeb8d14bb0c28e9dda22cc2d580e7af929  is the new nodeID. Verify the same using:

Kill your iris instance running with iris start  command. Then, open the config file for iris using:

Change persistent peer configuration from

to:

Make note: Here, correct node ID which your system has should be entered along with IP and Port
in the format nodeID@ip:port . Failure to do so could lead to gateway not being able to connect.

Save the configuration file and exit using ESC -> :wq -> RETURN  and begin iris using iris start

Run the gateway using run command given above.

Note: Run the gateway post running the iris node only, since the gateway needs to do RPC calls to
the iris node to find the chain and verify compatibility before running.

That's it!

The gateway for Fantom is undergoing testing. Please feel free to register at 
https://form.typeform.com/to/mx9BbUM0

/home/exampleuser/.marlin/ctl/configs/iris_keyfile-0.0.1.json

$ grep IdString /home/exampleuser/.marlin/ctl/configs/iris_keyfile-0.0.1.json

Step 2: Restart IRISnet node with gateway as persistent peer

$ vim ~/.iris/config/config.toml

# Comma separated list of nodes to keep persistent connections to

persistent_peers = ""

# Comma separated list of nodes to keep persistent connections to

persistent_peers = "f4d35da5490d9e5962b0b3041ccc2980b0dec5dd@127.0.0.1:59001"

Step 3: Run the gateway

Fantom

https://form.typeform.com/to/mx9BbUM0


. You will receive a notification once the gateway is ready. Your delegators will be made eligible for
FlowMint immediately for a grace period till the gateway is not ready and installed.

The gateway for Matic is undergoing testing. Please feel free to register at 
https://form.typeform.com/to/mx9BbUM0. You will receive a notification once the gateway is
ready. Your delegators will be made eligible for FlowMint immediately for a grace period till the
gateway is not ready and installed.

Gateways are basically a stripped down version of the blockchain node (called a shadow node)
which implement only the p2p networking parts. Most notably, there's no discovery, sync, storage
or consensus, so the gateway is extremely lean.

On one side, since the gateway implements the p2p networking stack, you can add the gateway as
a peer to your blockchain node and it will automatically communicate with it (no invasive code
changes). On the other side, it automatically discovers and maintains connections with Marlin
relay nodes and is able to send and receive data from it.

The two sides of the gateway are occasionally incompatible with each other. This might be due to
a variety of reasons including different event loops, incompatible languages/libraries, etc. Hence,
the two sides are split into two parts which communicate between each other through the network
instead.

Not more than connecting to any other peer. The shadow node approach is designed to affect the
real blockchain node as little as possible:

there are no codebase changes
the blockchain node still verifies all messages and runs its consensus engine as always
communication is strictly through its own p2p networking stack

Matic

Discussion
What exactly is a gateway?

Why is a bridge sometimes needed?

Does it affect the safety/stability of my node?

https://form.typeform.com/to/mx9BbUM0


the blockchain node doesn't interact with the Marlin network directly (in fact, it doesn't even
know that Marlin exists)
the gateway can be run in a different VM separate from the node to further isolate it

Hence, the "attack surface" is pretty much the same as another peer that your node connects to.

The blockchain node still needs to get the data from some other node in your control. E.g. some
chains secure their validator nodes by running them behind sentry nodes which insulate the
validator against rogue peers. You can simply choose to run the gateway beside the sentry node
instead of the validator.

My node doesn't connect to other (random) peers though.


